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6.1 Introduction

Accurate load forecasting is vital for efficient energy management and planning in smart grids. In
the revision of the literature review, it can be seen the principal authors that have been published
regarding energy demand forecast is shown in figure 6.1; also, in figure 6.2, the major countries that
have contributed to this research topic are shown.

Energy forecasting enables power system operators to manage energy supply and demand,
minimize energy waste, and maintain the regular operation of power systems. Load forecasting also
plays a critical role in integrating renewable energy sources into the power grid, as it helps balance
the energy supply and demand and reduces dependence on fossil fuels [1].

Accurate load forecasting is crucial for managing residential, commercial, and industrial energy
usage. It allows energy providers to plan and optimize their energy generation, transmission, and
distribution systems, resulting in significant cost savings and improved energy efficiency. Moreover,
load forecasting ensures that energy providers meet customers’ demands while maintaining a stable
and reliable supply. In all sectors, and especially industrial ones, where economic factors are critical,
forecasting is particularly crucial due to their complex energy consumption patterns that vary
depending on the time of day, day of the week, and academic calendar [2].

Time series analysis is a valuable statistical technique that facilitates analyzing and predicting
trends over time. In energy demand forecasting, time series analysis enables the identification of
patterns within energy consumption data, including daily, weekly, and seasonal variations. With this
information, predictive models can be created to aid energy providers in forecasting future energy
demand and designing effective plans. Using time series analysis can lead to more efficient and
effective energy management.
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Figure 6.1: Bibliometric revision. Main authors that have published for forecasting electrical
demand

Figure 6.2: Bibliometric revision. Main countries that have published for forecasting electrical
demand
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6.2 Related Works

In [2], authors aim to enhance the accuracy of short-term load forecasting in smart grids by analyzing
user behavior patterns and grouping users using the K-means algorithm. The research suggests a load
forecasting model that employs the FCM-BP neural network to predict the load value by determining
the load rate-of-change just before the prediction without making a direct prediction. The study
gathered load data from users, grouped them with the K-means algorithm, and developed a load
forecasting model using the FCM-BP neural network. The outcomes indicate that the proposed
method improves the model’s prediction accuracy compared to other methods such as RBF, GRNN,
BP neural network, and the unclustered FCM-BP model. The paper also discusses future work to
improve the clustering method further and investigate the effect of economic and climatic factors on
the accuracy of the load forecasting model. This research contributes to the field of load forecasting
by suggesting an approach that enhances the accuracy of short-term load forecasting in smart
grids. The proposed method leverages user behavior patterns and grouping to boost the accuracy
of user-level load forecasting, emphasizing the importance of analyzing user behavior patterns and
clustering users to enhance load forecasting accuracy. Power system operators can apply the proposed
method to improve load forecasting accuracy, aiding energy management and planning. The research
also recommends future work to enhance the clustering method further and analyze the impact of
external factors, such as economic and climatic factors, on the accuracy of the load forecasting model.
The proposed method can construct a user-level high-resolution and high-precision load forecasting
model.

Authors in [3] present power consumption forecasting models utilizing artificial neural networks
(ANN) and support vector regression (SVR) for higher education institutions. The study collected
power consumption data every 15 minutes for over a year from four different building clusters in
a university. The research team evaluated three other data models that represented the building
clusters’ characteristics and assessed performance using mean absolute percentage error (MAPE),
root mean square error (RMSE), and mean fundamental error (MAE). Results showed that the
ANN-based model outperformed the SVR-based model. Principal component analysis (PCA) was
also more accurate than factor analysis (FA).

Additionally, including work hours, class schedule information, and weather data improved
forecasting accuracy, particularly for educational buildings. These models can aid higher education
institutions in optimizing energy management strategies and achieving sustainability goals. The
research team compared their work with previous studies using machine learning algorithms such
as ANN, GA-ANN, and SVR for power consumption forecasting. Their models predicted energy
consumption every 15 minutes, while previous studies predicted it hourly. They found that considering
external factors such as weekday/holiday and weather information improved prediction accuracy.
The team evaluated their models’ performance using MAPE, RMSE, and MAE, demonstrating
that their proposed models achieved higher accuracy than prior studies. The team also presented
prediction results for events and average days using the best forecasting model for each cluster. The
experimental results indicate that the models can accurately predict power consumption for higher
education institutions, resulting in significant cost savings, reduced carbon emissions, and improved
energy efficiency.

In [4], the paper aims to create a mathematical model that can accurately forecast the amount of
active power consumed in the power system of Kaliningrad oblast. It involves examining the structure
of electric power consumption, studying the influence of meteorological factors on active power
consumption, and developing a reliable mathematical model for operational forecasting. The study
uses statistical research methods, specifically regression analysis, to determine how meteorological
factors impact active power consumption. The developed mathematical model is evaluated using
six-time series forecasting error indicators, and its reliability is confirmed using the Fisher criterion.
The results demonstrate that the mathematical model is highly accurate in forecasting active power
consumption, with an error probability of less than 1%. The study’s novelty lies in developing a
mathematical model incorporating the adjusted change rate of dynamic power consumption according
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to discrete conditions and the amount of active power used for power plant needs. The practical
significance of this model is that it serves as the basis for the method of operational forecasting, which
is implemented in the Regional Dispatch Department of the Kaliningrad Oblast’s Power System.
The study’s findings can be helpful for power system operators and researchers to develop similar
mathematical models to forecast active power consumption in other power systems, as the developed
model accurately predicts active power consumption with a forecasting error of less than 3.0% and
an error probability of less than 1%.

The research presented in [5] proposes a more accurate and faster residential electricity con-
sumption forecasting model called the IWOA-OGSVI model. It combines the Improved Whale
Optimization Algorithm (IWOA) and the Optimized Grey Seasonal Variation Index (OGSVI) model
and outperforms traditional models in accuracy and speed. The paper includes an empirical study
on residential electricity consumption in four Chinese cities and suggests future research directions.
Overall, the article provides valuable insights into developing accurate and prompt forecasting models
for electricity consumption.

In [6], the author explores the potential of forecasting electricity consumption for a large healthcare
facility. The forecasting technique used is SARIMA modeling, which analyzes past data to predict
future values. The study employs the Box-Jenkins procedure to create possible models and compares
the performance of SARIMA and ARIMA models. The findings indicate that the SARIMA model
outperforms the ARIMA model. The analysis of hospital data spanning 11 years reveals that these
dynamic models can accurately forecast electricity consumption.

Research in [7] aims to determine the most reliable short-term load forecasting method for
residential consumers during unusual consumption, such as the COVID-19 pandemic. The study
evaluates three forecasting methods: linear regression (LR), autoregressive integrated moving average
(ARIMA), and artificial neural network (ANN). The authors used multiyear hourly residential
consumption data to estimate and validate the accuracy of the forecasts. The main findings indicate
that the forecasting methods retained their hierarchy and accuracy in forecasting errors during
unusual consumer behavior, similar to normal conditions if a trigger or alarm mechanism existed and
there was sufficient time to adapt and deploy the forecasting algorithm. The ANN method generated
the best results, followed by ARIMA and LR. The paper’s original contribution is the ability to
forecast loads that have no historical reference data. The results can be used as best practices during
power load uncertainty and unusual consumption behavior.

Authors in [8] focus on accurately forecasting India’s reliance on foreign oil using different methods.
The authors utilized linear Auto-Regressive Integrated Moving Average (ARIMA) and nonlinear
Back Propagation (BP) to correct the nonlinear metabolic grey model (NMGM) forecasting residuals
in three steps. They integrated the metabolic idea with a nonlinear grey model to create NMGM,
which they combined with ARIMA to develop NMGM-ARIMA and BP to develop NMGM-BP. The
proposed models analyzed India’s dependence on foreign oil from 1995 to 2017 and forecasted the data
from 2018 to 2030. The mean relative error of the proposed forecasting models was approximately
1.5%, which produced reliable results. The forecasts demonstrate that India’s dependence on foreign
oil is expected to increase to 90% around 2025, which poses a significant challenge to India’s oil
security and global oil market.

Research in [9] explores how well ARIMA models can predict electrical load time series despite
noise interference. They conducted a simulation-based experiment using an ARIMA model based on
actual load data from the Polish power system. They introduced varying levels of noise to test its
forecast accuracy. The model was then re-identified, its parameters estimated, and new forecasts
made to determine the threshold at which the model’s forecasting ability broke down. These findings
underscore the significance of data preprocessing in data mining and learning and have possible
implications for energy policy and power system reliability.

Other techniques for forecasting are also widely used, as shown in [10], where researchers present
a model for predicting power consumption that uses wavelet transform and multi-layer LSTM. The
goal is to create an effective power generation and transmission plan while avoiding the waste of
electricity resources. The sample data is first processed to eliminate any volatility in the electricity
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consumption data using wavelet transform to achieve this. Then, the multi-layer LSTM model is
used for training using the pre-processed samples. The model is tested by predicting daily power
consumption in an area controlled by a US electric power company. Experimental results show that
this model has better prediction performance than traditional LSTM and bidirectional LSTM, with
a mean square error of 0.019 and a coefficient of determination R2 as high as 0.997. Additionally,
wavelet denoising can further improve the prediction performance of the model.

In [11], the paper presents a new way of predicting monthly electricity usage using a hybrid
forecasting model. The model combines the HolteWinters exponential smoothing method with the
fruit fly optimization algorithm to accurately forecast occasional series, even with limited training
data. The fruit fly optimization algorithm is used to identify the best smoothing parameters for the
Holt-Winters exponential smoothing. The model was tested using electricity consumption data from
a city in China and was found to improve prediction accuracy, even with limited training samples
significantly. Additionally, the proposed model is faster than other hybrid benchmark algorithms.

6.3 Problem Formulation and Methodology
Accurate energy forecasting is crucial for power system expansion and reliability, as it enables utilities
to plan for future energy demands and ensure enough capacity to meet those demands. It is especially
significant for renewable energy sources, which can be more variable than traditional fossil fuels.
Utilities can better manage their energy supply and avoid blackouts or brownouts through precise
energy forecasting of wind turbines or solar panels.

Also, energy forecasting is vital for preparing for future energy needs and ensuring the reliability
of the power system. Utilities can use energy supply and demand predictions to identify potential
weaknesses in the design and take steps to prevent them. For instance, if a utility expects high
energy demand during a specific time, it may activate additional generators or introduce demand
response programs to lessen energy usage during peak hours. This proactive approach guarantees that
the power system remains dependable and robust, despite changing energy demands and potential
disturbances [12].

Load increments uncertainties can significantly impact the stability and reliability of electrical
power systems [13]. Accurate load forecasting is essential for energy companies to efficiently plan
their production and distribution of energy, which can help to avoid wastage or shortages. Techniques
for load forecasting are essential to mitigate these uncertainties, as they can help energy companies to
make more accurate predictions of future energy demand. This can lead to better resource allocation,
reduced operational costs, and improved customer satisfaction. Additionally, load forecasting
techniques can help energy companies to identify opportunities for energy conservation and efficiency
improvements, which can further reduce the impact of load increments uncertainties on the power
system.

Therefore, this work proposes using ARIMA time series for electricity consumption modeling
and prediction through Matlab.

6.3.1 Study case
Therefore, to conduct a forecasting analysis using time series analysis, actual data on electricity
consumption has been collected. Specifically, this work uses monthly electricity consumption data
from Quito, Ecuador, from 2004 to 2018, resulting in 180 data records. This information is publicly
accessible online through the official Electricity regulator entity of the Ecuadorian government.
Figure 6.3 shows the electricity consumption during the period previously stated; in other words,
it offers 180 monthly data; additionally, for a better understanding, Figure 6.4 shows only a year
(2010) for a better understanding of the electricity consumption behavior.

6.3.2 Time series analysis: Seasonal Auto-Regressive Integrated Moving Average (SARIMA)
To analyze the seasonal patterns in electricity consumption, this model employs auto-regressive AR
and moving average MA models. These patterns tend to repeat themselves periodically, and for this
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Power BI DesktopMonthly Electricity consumption, Quito-Ecuador 2004-2018
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Figure 6.3: Electricity consumption for Quito-Ecuador from 2004 to 2018
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Figure 6.4: Electricity consumption for Quito-Ecuador, for the year 2010

particular study, the period is 12 months based on monthly data. As a result, a SARIMA time series
model would be the most appropriate for analyzing the data.

When working with autoregressive models, it is essential to remember that the current value of
a given series can be expressed as a linear combination of its preceding values. This relationship
holds for up to a maximum of p previous values, where p is a predetermined value dependent on
the specific model being used {X(t− 1), X(t− 2), X(t− 3), . . . X(t− p)}. By understanding this
fundamental principle, one can understand the underlying patterns and trends within a given dataset,
leading to a more accurate and informative analysis. Similarly, the MA component is derived using a
linear combination of q preceding white noise values {Z(t− 1), Z(t− 2), Z(t− 3), . . . Z(t− q)}. This
method helps to smooth out data patterns and identify underlying trends.

By considering the operator B (Backward shift operator), which describes a temporal item
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that depends on a previous sample BXt = Xt−1. This operator allows defining the autoregres-
sive component of a time series as

{
(1− Φ1B

12 − Φ2B
24 . . .)Xt

}
and the moving average part{

(1−Θ1B
12 −Θ2B

24 . . .)Zt

}
.

A SARIMA model is made up of coefficients that determine its order. Two coefficients for the
autoregressive and moving average components are denoted as p and q, respectively. Additionally,
two more coefficients, represented as P and Q, are considered for the seasonal autoregressive and
moving average components. The differential part is typically set to 1 for an electricity model, and
the seasonality corresponds to twelve months. A SARIMA model has six coefficients of interest:
three for the non-periodic part (p, d, q) and three for the periodic part (P,D,Q). This information
can be represented in equation (6.1).

ΦP (B
S)ϕp(B)(1−BS)D(1−B)dXt = ΘQ(B

S)βq(B)Zt (6.1)

6.3.3 Methodology for electricity consumption forecasting

This project aims to create a methodology for predicting electricity consumption data every month.
Then, to achieve this, the data must be analyzed to determine if it displays any seasonal patterns,
which is necessary for a SARIMA time series model. The range for coefficients (p,q) and (P, Q) will
be identified through correlation and autocorrelation analysis. Using Matlab, the values for each
coefficient will be calculated to establish the model. The final step involves forecasting the data and
evaluating the error. A detailed outline of this process can be found in Figure 6.5

Historical Data:
Monthly 

Electricity consumption for 
Quito-Ecuador: 2004-2018

Data cleaning and 
validation 

Seasonality Validation
Differentiation process 

START

DATA LOADING

Is Data seasonal ?
Determination of p and P 
range: correlation analysis

Determination of q and Q 
range: auto-correlation 

analysis

END

SARIMA model 
implementation: determin
ation of coefficients p, P, q, 

Q with Matlab

FORECASTING: prediction 
of 12 months ahead for 
electrical consumtion 

ERROR VALIDATION

NO YES

MODEL COEFFICIENTS FORECAST

Figure 6.5: Methodology for electricity forecasting

When the SARIMA model is created, it is necessary to validate the model’s error by comparing
the original data for electricity consumption EC and the values produced by the model. The residual
sum of squares will be used as the criteria for model validation, as is shown in equation 6.2.
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RSS =

n∑
i=1

(EDi − SARIMAi)
2 (6.2)

6.4 Matlab Coding and Results Analysis
Thus, the primary action is to meticulously clean and validate the data to initiate the suggested
approach. It is essential to ascertain whether the data manifests any seasonal trends. If such
movements are present, the time series of electricity consumption ought to show no increasing pattern
post-differentiation. This entire procedure is conducted on Matlab; the corresponding code is shown
below.

1 clc , clear
2 %% DATA LOADING
3 opts = detectImportOptions('DATA_MONTHLY_18.csv');
4 opts = setvaropts(opts ,"DATE",'InputFormat ','MM/dd/uuuu');
5 ec = readtable('DATA_MONTHLY_18.csv',opts);
6
7 demand=ec{:," MAXDEMAND_MW_ "};
8 date=ec{:,"DATE "};
9

10 %% VISUAL REPRESENTATION
11 % Original Data
12 figure ()
13 subplot (2,1,1)
14 plot(date ,demand)
15 title('Electricity consumption 2004 -2018')
16 xlabel('Date')
17 ylabel('Electricity consumption [MW]')
18
19 %% SEASONALITY VERIFICATION
20 % Data differentiation
21 demand_dif=diff(demand);
22 subplot (2,1,2)
23 plot(demand_dif)
24 title('Differentiated Electricity consumption ')
25 xlabel('Date')
26 ylabel('Electricity consumption [MW]')
27
28 h=gcf;
29 set(h,'PaperPositionMode ','auto');
30 set(h,'PaperType ','A4');
31 set(h,'PaperOrientation ','landscape ');
32 set(h,'Position ' ,[10 0 500 800]);
33 set(h, 'InvertHardcopy ', 'off')
34 figure = gcf;
35 figure.Color = 'white';
36 print -pdf -r800 figure1

After applying this analysis to the electricity consumption of Quito-Ecuador from 2004 to 2018,
Figure 6.6 shows that this data corresponds to a seasonal time series.
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Figure 6.6: analysis for seasonality in electricity consumption for Quito-Ecuador from 2004
to 2018

Then, an analysis was performed on electricity time series data to ascertain the order of
autoregressive and moving average coefficients for the SARIMA model. The data were scrutinized
using correlation and autocorrelation techniques to identify significant lags greater than one. It
helped to determine the order of each coefficient accurately and efficiently. The Matlab code for this
analysis is shown as follows.

1 %% SERIES CORRELATION
2 figure ()
3 autocorrect(demand_dif)
4 h=gcf;
5 set(h,'PaperPositionMode ','auto');
6 set(h,'PaperType ','A4');
7 set(h,'PaperOrientation ','landscape ');
8 set(h,'Position ' ,[10 0 800 800]);
9 set(h, 'InvertHardcopy ', 'off')

10 figure = gcf;
11 figure.Color = 'white';
12 print -pdf -r800 figure3
13
14 %% SERIES PARTIAL AUTOCORRELATION
15 figure ()
16 parcorr(demand_dif)
17 h=gcf;
18 set(h,'PaperPositionMode ','auto');
19 set(h,'PaperType ','A4');
20 set(h,'PaperOrientation ','landscape ');
21 set(h,'Position ' ,[10 0 800 800]);
22 set(h, 'InvertHardcopy ', 'off')
23 figure = gcf;
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24 figure.Color = 'white';
25 print -pdf -r800 figure4

Matlab analysis of correlation and partial auto-correlation shown in figure 6.7 reveals four
significant lags in the time series correlation; this suggests that the autoregressive component should
have an order ranging from 0 to 4. The partial auto-correlation analysis indicates seven significant
lags, implying that the moving average order should range from 0 to 7.
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Figure 6.7: analysis for autoregressive and moving average indexes order

So far, the analysis for electricity consumption has provided the following criteria:
• Autoregressive component p varies from 0 to 4.
• Moving average component q varies from 0 to 7.
• Considering that the time series has been differentiated once, d = 1 and D = 1.
• P takes the same values as p.
• Q takes the same values as q.
• As data was taken by one sample per month, seasonality S = 12
Next, it is necessary to build a SARIMA model in Matlab using the already discussed structure

and determining the values for the associated coefficients (p, q, P, Q). Once the model is created,
the error will be evaluated using equation 6.2.

1 %% SARIMA MODEL CREATION
2
3 %% Seasonal ARIMA Model
4 % Estimate a SARIMA Model of demand1
5 SARIMA_mdl = arima('Constant ',0,'ARLags ' ,1:4,...
6 'D',1,'MALags ' ,1:7,'SARLags ' ,[12 ,24],...
7 'Seasonality ',0, 'SMALags ' ,[12 ,24],...
8 'Distribution ', 'Gaussian ');
9 SARIMA_mdl = estimate(SARIMA_mdl ,demand ,'Display ','off');
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10
11 % Sarima Model
12 residuals = infer(SARIMA_mdl ,demand);
13 model = demand+residuals;
14
15 % RSS calculation for error
16 error_ab=demand - model;
17 error_p=error_ab ./ demand;
18 error_p=abs(error_p *100);
19 error_mean=mean(error_p)
20 RSS=sum(error_p)
21
22 figure ()
23 plot(demand ,'LineWidth ' ,2)
24 hold on
25 plot(model ,'--', 'LineWidth ',2, 'Color', '#D95319 ')
26 legend('Original electricity consumption ' ,...
27 'Time series created with SARIMA model ,' 'Location ', northwest ')
28 title('Original time series vs Sarima Model ')
29 xlabel('Sample ')
30 ylabel('Electricity consumption [MW]')
31
32 h=gcf;
33 set(h,'PaperPositionMode ','auto');
34 set(h,'PaperType ','A4');
35 set(h,'PaperOrientation ','landscape ');
36 set(h,'Position ' ,[10 0 1000 800]);
37 set(h, 'InvertHardcopy ', 'off')
38 figure = gcf;
39 figure.Color = 'white';
40 print -pdf -r800 figure4

The values for each coefficient (p, q, P,Q), the residual sum of squares RSS and average error
per sample are shown in table 6.1

Table 6.1: SARIMA model coefficients and results
Name Description
p coefficients [0.0848375, -1.12611, 0.128075, -0.931196] at lags [1 2 3 4]]
q coefficients [-0.497183, 1.12716, -0.647343, 1, -0.546107, -0.0214771, -0.0948195] at lags [1 2 3 4 5 6 7]
P coefficients [0.0265442, 0.806656] at lags [12 24]
Q coefficients [0.293264, -0.504022] at lags [12 24]
Seasonal coefficient S = 12
Residual sum of squares RSS 201.7595
Average error per sample 1.1209%

Finally, after creating the SARIMA model and verifying that the RSS and average per sample
error are acceptable, the next step consists of creating forecasted values for the next 12 months of
electricity consumption. The Matlab code for this analysis is shown as follows.

1 %% FORECASTING DATA
2 % Plot only 8 last years
3 demand2=demand (100: end)
4 T=length(demand2);
5 [yF ,yMSE] = forecast(SARIMA_mdl ,12, demand);
6 upper = yF + 1.96* sqrt(yMSE);
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7 lower = yF - 1.96* sqrt(yMSE);
8
9 aux=demand2(end -1:end);

10 yF=cat(1,aux ,yF);
11 upper = cat(1,aux ,upper);
12 lower = cat(1,aux ,lower);
13
14
15 figure ()
16 plot(demand2 ,'LineWidth ' ,2)
17 hold on
18 h1 = plot(T-1:T+12,yF,' k', 'LineWidth ',2, 'Marker ', 'diamond ');
19 h2 = plot(T-1:T+12,upper ,'r--,' 'LineWidth ,' 1.5,'Marker ,''*');
20 plot(T-1:T+12,lower ,' r--', 'LineWidth ' ,1.5, 'Marker ','*')
21 grid on
22 grid minor
23 xlim([0,T+11])
24 title('Electricity consumption forecast and 95% Forecast Interval ')
25 xlabel('Sample ')
26 ylabel('Electricity consumption [MW]')
27 legend ([h1,h2], 'Forecast ', '95 % Interval ', 'Location ','NorthWest ')
28 hold off
29
30 h=gcf;
31 set(h,'PaperPositionMode ','auto');
32 set(h,'PaperType ','A4');
33 set(h,'PaperOrientation ','landscape ');
34 set(h,'Position ' ,[10 0 1200 800]);
35 set(h, 'InvertHardcopy ', 'off')
36 figure = gcf;
37 figure.Color = 'white';
38 print -pdf -r800 figure5

Forecasting values are shown in figure 6.8 in the black colored line. Also, this figure shows
confidence intervals of ±5%.

6.5 Conclusions
Energy forecasting plays a critical role in predicting future energy demand and ensuring the reliability
of the power system. It allows utilities to plan for energy needs, manage supply, and identify potential
vulnerabilities in the system. Accurate forecasting becomes even more crucial as the shift towards
renewable energy sources continues due to their inherent variability. Therefore, investing in reliable
and precise energy forecasting methods is imperative for utilities to meet customer demands and
maintain a dependable power system.

By utilizing time series analysis, it is possible to accurately model and understand electricity
consumption behavior. By creating a precise mathematical model, predictions can be made with a
high degree of reliability. Research has shown that such models can produce a small residual sum of
squares (RSS) and average error per sample, further bolstering the dependability of predicted values.

In this work, a highly useful tool is presented that enables users to create an effective time series
model for energy consumption. It should be noted that this tool is versatile and can be applied to
any problem. It is crucial to assess the model’s errors in order to determine its alignment with actual
data. The residual sum of squares (RSS) is a key metric for this evaluation, as the closer it is to
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Figure 6.8: Electricity consumption forecast with 95% confidence intervals

zero, the more accurate the predicted values will be. This tool is an excellent resource for anyone
seeking to make reliable forecasts and optimize their energy usage.

Additionally, time series analysis can identify potential risks and opportunities in the energy
market, allowing companies to adjust their strategies accordingly. Overall, time series analysis is an
essential tool for energy companies looking to stay ahead of the curve and make informed decisions
about the future of energy consumption.
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